library(tidyquant)
library(tidyverse)
library(highcharter)
library(DT)
R Note 2 - Portfolio Formation using R
Course Information
Course Name: Investments | 000351051
Semester: Spring 2025
1. Fetching Stock Data
We use R to create an equally weighted portfolio consisting of four stocks: ExxonMobil (XOM), Walmart (WMT), NVIDIA (NVDA), and Apple (AAPL). Using tidyquant
to fetch stock prices via Yahoo Finance. Note that the corresponding ticker for a given stock can be found on its website.
# Define stock tickers and date range
<- c("XOM", "WMT", "NVDA", "AAPL")
stocks <- "2023-01-01"
start_date <- "2023-04-30"
end_date # Download stock prices
<- tq_get(stocks, from = start_date, to = end_date)
prices # Print out interactive table
datatable(prices) |>
formatRound(columns = c("open","high","low","close","adjusted"), digits = 2)
2. Constructing an Equally Weighted Portfolio
Assuming a $1,000,000 budget divided equally among the four stocks, we calculate how many shares we can purchase on the first business day in January 2023.
# Assigned budget
<- 1000000
budget <- length(stocks)
num_stocks <- budget / length(stocks)
budget_per_stock # Positions for each stock
<- prices |>
initial_positions filter(date == min(date)) |>
mutate(shares = floor(budget_per_stock / adjusted)) |>
select(symbol, shares)
datatable(initial_positions)
3. Portfolio Valuation and Return Calculation
Portfolio Value
Calculate the portfolio value for each trading day:
<- prices |>
portfolio inner_join(initial_positions, by = "symbol") |>
mutate(position_value = shares * adjusted) |>
group_by(date) |>
summarize(total_value = sum(position_value)) |>
arrange(date)
datatable(portfolio) |>
formatRound(columns = c("total_value"), digits = 2)
Portfolio Returns
A. Calculating returns from the net value of portfolio
Returns in finance can be calculated using either discrete or continuous methods. Both approaches measure investment performance but have different interpretations and applications. Here presents the key difference between these two:
Feature | Discrete Returns | Continuous Returns |
---|---|---|
Formula | \[ R_t=P_t/P_{t-1}-1 \] | \[ R_t=ln(P_t/P_{t-1}) \] |
Interpretation | Simple percentage change | Log-based compounding change |
Time Additivity | ❌ No | ✅ Yes |
Compounding | Not considered | Naturally accounts for compounding |
Use Case | Short-term analysis (daily, weekly returns), industry | Long-term modeling (portfolio returns, Black-Scholes model), academics |
Calculate discrete and continuous returns for the portfolio:
<- portfolio |>
portfolio mutate(discrete_return = 100*(total_value / lag(total_value) - 1),
continuous_return = 100*log(total_value / lag(total_value)))
datatable(portfolio) |>
formatRound(columns = c("total_value","discrete_return","continuous_return"), digits = 2)
B. Calculating returns directly from portfolio securities
Similar to the previous method, we calculate discrete and continuous returns for the portfolio through portfoflio stocks directly rather than net value:
<- prices |>
individual_ret mutate(
# 1. assign portfolio weights on corresponding stocks
portfolio_weight = case_when(
== "XOM" ~ 0.25,
symbol == "WMT" ~ 0.25,
symbol == "NVDA" ~ 0.25,
symbol == "AAPL" ~ 0.25
symbol
),# 2. individual returns (grouped by each stock)
discrete_return = 100*(adjusted / lag(adjusted) - 1),
continuous_return = 100*log(adjusted / lag(adjusted)),
.by = symbol
|>
) select(symbol, date, portfolio_weight, discrete_return, continuous_return) |>
# the first obervation of each stock will naturally be missing since there is no lagged value, then we drop it out
drop_na(continuous_return)
# print out individual returns
datatable(individual_ret) |>
formatRound(columns = c("discrete_return","continuous_return"), digits = 2)
# Aggregate returns of four individual stocks by each day (DATE)
<- individual_ret |>
portfolio_ret group_by(date) |>
summarise(port_return = sum(portfolio_weight*continuous_return),
.groups = "drop")
datatable(portfolio_ret) |>
formatRound(columns = c("port_return"), digits = 2)
Portfolio Volatility
Calculate variance and volatility (standard deviation) of portfolio returns from individual stocks.
The portfolio volatility (standard deviation of portfolio returns) is given by:
\[ \sigma_p = \sqrt{ w^T \mathbf{\Sigma}w}\]
Where:
\(\sigma_p\) = Portfolio volatility
\(w\) = Column vector of asset weights (\(w_1, w_2, w_3, w_4\))
\(\mathbf{\Sigma}\) = Covariance matrix of asset returns
\(w^T\) = Transposed weight vector
# sigma for each stock
<- individual_ret |>
portfolio_volatility group_by(symbol) |>
summarise(sigma = sd(continuous_return),
.groups = "drop")
head(portfolio_volatility)
# A tibble: 4 × 2
symbol sigma
<chr> <dbl>
1 AAPL 1.40
2 NVDA 3.09
3 WMT 0.944
4 XOM 1.77
# stock weights
<- c(0.25, 0.25, 0.25, 0.25)
weights # individual stock volatilities (standard deviations)
<- portfolio_volatility$sigma
volatilities # correlation matrix
<- individual_ret |>
returns_wide select(symbol, date, continuous_return) |>
pivot_wider(names_from = symbol, values_from = continuous_return)
# Calculate correlation matrix
<- cor(returns_wide[, -1], use = "pairwise.complete.obs")
cor_matrix datatable(cor_matrix)
# Compute covariance matrix
<- (volatilities %*% t(volatilities)) * cor_matrix
cov_matrix # Calculate portfolio volatility
<- sqrt(t(weights) %*% cov_matrix %*% weights)
portfolio_volatility # Print result
cat(sprintf("Portfolio return is %.2f percent", portfolio_volatility))
Portfolio return is 1.21 percent
4. Visualizing Portfolio Value with highcharter
# Portfolio value
hchart(portfolio, type = "area", hcaes(x = date, y = total_value)) |>
hc_title(text = "Portfolio Value Over Time") |>
hc_yAxis(title = list(text = "Total Portfolio Value ($)")) |>
hc_xAxis(title = list(text = "Date")) |>
hc_tooltip(pointFormat = "Value: ${point.y:,.0f}") |>
hc_add_theme(hc_theme_smpl())
# Portfolio returns (continous returns)
hchart(portfolio, type = "line", hcaes(x = date, y = continuous_return)) |>
hc_title(text = "Portfolio Returns Over Time") |>
hc_yAxis(title = list(text = "Portfolio Return (%)")) |>
hc_xAxis(title = list(text = "Date")) |>
hc_tooltip(pointFormat = "Return: {point.y:.2f} %") |>
hc_add_theme(hc_theme_smpl())
This interactive visualization shows how the value of your equally weighted portfolio changes throughout sample period.
5. Buy-and-Hold Returns
Buy-and-hold returns represent the total return from buying a stock and holding it over a specified period, without any transactions in between.
Calculation
To calculate buy-and-hold returns:
<- portfolio |>
buy_hold_returns mutate(buy_hold_return = 100*(total_value / first(total_value) - 1),
cumulative_return = cumsum(coalesce(discrete_return, 0)))
head(buy_hold_returns)
# A tibble: 6 × 6
date total_value discrete_return continuous_return buy_hold_return
<date> <dbl> <dbl> <dbl> <dbl>
1 2023-01-03 999917. NA NA 0
2 2023-01-04 1011080. 1.12 1.11 1.12
3 2023-01-05 1004705. -0.631 -0.633 0.479
4 2023-01-06 1033481. 2.86 2.82 3.36
5 2023-01-09 1039950. 0.626 0.624 4.00
6 2023-01-10 1049662. 0.934 0.930 4.97
# ℹ 1 more variable: cumulative_return <dbl>
6. Portfolio Comparison: Equally Weighted Portfolio vs. 100% NVDA Portfolio
Let’s compare our equally weighted portfolio against a portfolio fully invested in NVDA.
# NVDA only portfolio: see how many shares we can purchase at most
<- prices |>
nvda_only_position filter(symbol == "NVDA", date == min(date)) |>
mutate(shares = floor(budget / adjusted)) |>
select(symbol, shares)
# Hold such shares of Nvdia
<- prices |>
nvda_portfolio filter(symbol == "NVDA") |>
inner_join(nvda_only_position, by = "symbol") |>
mutate(total_value = shares * adjusted) |>
select(date, nvda_only = total_value)
# Combine both portfolios for comparison
<- portfolio |>
combined_portfolios select(date, equally_weighted = total_value) |>
inner_join(nvda_portfolio, by = "date")
head(combined_portfolios)
# A tibble: 6 × 3
date equally_weighted nvda_only
<date> <dbl> <dbl>
1 2023-01-03 999917. 999999.
2 2023-01-04 1011080. 1030317.
3 2023-01-05 1004705. 996507.
4 2023-01-06 1033481. 1038002.
5 2023-01-09 1039950. 1091721.
6 2023-01-10 1049662. 1111351.
Visualization of Both Portfolios
<- combined_portfolios |>
combined_portfolios_long pivot_longer(cols = c(equally_weighted, nvda_only), names_to = "Portfolio", values_to = "Value")
hchart(combined_portfolios_long, "line", hcaes(x = date, y = Value, group = Portfolio)) |>
hc_title(text = "Equally Weighted vs. 100% NVDA Portfolio") |>
hc_yAxis(title = list(text = "Portfolio Value ($)")) |>
hc_xAxis(title = list(text = "Date")) |>
hc_tooltip(pointFormat = "{series.name}: ${point.y:,.0f}") |>
hc_add_theme(hc_theme_smpl())
Exercises
Suppose we use the following portfolio weights: XOM (20%), WMT (30%), NVDA (30%), and AAPL (20%).
- Recalculate how many shares you would purchase initially.
- Compute and visualize the portfolio value and returns.
Change the budget to $500,000 and use portfolio weights: XOM (25%), WMT (25%), NVDA (25%), and AAPL (25%).
- Recalculate the shares purchased, portfolio value, and returns.
- Provide an interactive visualization for this scenario.
Happy coding! 🚀 This version will be continuously updated.